首页> 外文OA文献 >Gravitational and tectonic forces controlling the post-collisional deformation and present-day stress of the Alps. Insights from numerical modelling.
【2h】

Gravitational and tectonic forces controlling the post-collisional deformation and present-day stress of the Alps. Insights from numerical modelling.

机译:重力和构造力控制着阿尔卑斯山的碰撞后变形和当今的应力。数值建模的见解。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

We perform numerical modeling to investigate the mechanisms leading to the postcollisional tectonic evolution of the Alps. We model the lithospheric deformation as a viscous thin sheet with vertically averaged rheology and coupled with surface mass transport. The applied kinematic boundary conditions simulate the convergence between the Adria indenter and the European foreland during the last 35 Myr. Model predictions of elevation, lithospheric structure, erosion/sedimentation pattern and vertical axis rotation are compared with observations of the planform shape of the chain, topography, crustal thickness, distribution of rock exhumation and sediment thickness, and paleomagnetic rotations. Thickening of the lithosphere in the Alpine region is shown to be highly sensitive to the assumed viscosity law, to the strength contrasts between the different regions and to the surface mass transport. Modeling results indicate that the large-scale deformation of the Alps during the postcollisional phase is mainly controlled by accommodation of convergence in a weak orogenic zone caught between a nearly rigid Adria plate and a strong European foreland. Modeling of the present-day stress field shows that (1) the present rotation of Adria is responsible for the change of extension direction from strike-perpendicular in the western Alps to strike-parallel in the east and (2) the strike-perpendicular extension observed in the western Alps is likely due to lateral variations of gravitational potential energy. The results suggest a NNE shift of about 700 km of the Euler pole of Adria relative to Europe from its mean position during postcollisional deformation to the present day. Copyright 2005 by the American Geophysical Union.
机译:我们进行数值模拟以研究导致阿尔卑斯山碰撞后构造演化的机制。我们将岩石圈变形建模为具有垂直平均流变特性并结合表面质量传输的粘性薄片。所应用的运动边界条件模拟了最后35 Myr期间Adria压头和欧洲前陆之间的收敛。将模型预测的高程,岩石圈结构,侵蚀/沉降模式和垂直轴旋转与链的平面形状,地形,地壳厚度,岩石掘出物和沉积物厚度的分布以及古磁旋转的观测结果进行了比较。高山地区岩石圈的增厚对假定的粘度定律,不同区域之间的强度对比以及表面质量传输高度敏感。建模结果表明,碰撞后阿尔卑斯山的大规模变形主要是由适应在接近刚性的阿德里亚板块和强大的欧洲前陆之间的弱造山带中的收敛调节所控制的。对当前应力场的建模表明:(1)Adria的当前旋转是导致伸展方向从西阿尔卑斯山走向垂直走向东走向平行的原因;(2)垂直走向走向在阿尔卑斯山西部观测到的可能是由于重力势能的横向变化。结果表明,从碰撞后变形到目前的平均位置,阿德里亚的欧拉极点相对于欧洲的NNE位移约为700公里。美国地球物理联盟版权所有2005。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号